968 research outputs found

    In silico investigation of the effect of particle diameter on deposition uniformity in pulmonary drug delivery

    Get PDF
    Systemic drug delivery via the pulmonary route has a critical limitation because dose uniformity is strongly dependent upon patient inhalation technique. The most frequent and critical errors in inhalation technique are overly forceful inspiration and insufficient breath-holding. In this study, response surface methodology was used with an in silico whole lung particle deposition model for bolus administration to investigate whether varying the inhaled drug particle size could reduce the dependence of deposition upon flow rate and/or breath-holding duration. The range of particle aerodynamic diameters studied was 0.1–10 µm for flow rates between 500–2000 mL/s and breath-holding duration between 0–15 seconds. Comparison with published experimental data showed that this modeling approach can accurately predict the lung deposition. The simulation results indicated that the deposition of particles with aerodynamic diameter in the range of 0.1–1.5 µm should be minimally affected by flow rate over the 500–2000 mL/s range. There was found to be no particle size whose deposition was completely independent of breath-holding duration. The smallest particles, whose deposition is diffusion-driven, were found to be the least sensitive to breath-holding time, but this size is of limited practical use. On the other hand, the simulations indicated that particles with a 1.5 µm diameter would provide acceptable consistency in dose reaching the acini region when the breath-holding duration was greater than 10 seconds. It is hoped that this finding could provide a means of improving dose uniformity for systemic delivery via the pulmonary route by facilitating simplified patient instructions

    REGULATORY APPROVAL OF NEW MEDICAL DEVICES: A CROSS SECTIONAL STUDY

    Get PDF
    Objective To investigate the regulatory approval of new medical devices. Design Cross sectional study of new medical devices reported in the biomedical literature. Data sources PubMed was searched between 1 January 2000 and 31 December 2004 to identify clinical studies of new medical devices. The search was carried out during this period to allow time for regulatory approval. Eligibility criteria for study selection Articles were included if they reported a clinical study of a new medical device and there was no evidence of a previous clinical study in the literature. We defined a medical device according to the US Food and Drug Administration as an “instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article.” Main outcome measures Type of device, target specialty, and involvement of academia or of industry for each clinical study. The FDA medical databases were then searched for clearance or approval relevant to the device. Results 5574 titles and abstracts were screened, 493 full text articles assessed for eligibility, and 218 clinical studies of new medical devices included. In all, 99/218 (45%) of the devices described in clinical studies ultimately received regulatory clearance or approval. These included 510(k) clearance for devices determined to be “substantially equivalent” to another legally marketed device (78/99; 79%), premarket approval for high risk devices (17/99; 17%), and others (4/99; 4%). Of these, 43 devices (43/99; 43%) were actually cleared or approved before a clinical study was published. Conclusions We identified a multitude of new medical devices in clinical studies, almost half of which received regulatory clearance or approval. The 510(k) pathway was most commonly used, and clearance often preceded the first published clinical study

    Making the leap: the translation of innovative surgical devices from the laboratory to the operating room

    Get PDF
    MINI-ABSTRACT: A decade from publication, approximately one in ten surgical devices described in the literature made the leap from the laboratory to a first-in-human study. Clinical involvement was a significant predictor of translation; devices developed with clinical collaboration were over six times more likely to be translated than those without. STRUCTURED ABSTRACT: OBJECTIVE: To determine the rate and extent of translation of innovative surgical devices from the laboratory to first-in-human studies, and to evaluate the factors influencing such translation. SUMMARY BACKGROUND DATA: Innovative surgical devices have preceded many of the major advances in surgical practice. However, the process by which devices arising from academia find their way to translation remains poorly understood. METHODS: All biomedical engineering journals, and the five basic science journals with the highest impact factor, were searched between January 1993 and January 2000 using the Boolean search term “surgery OR surgeon OR surgical”. Articles were included if they described the development of a new device and a surgical application was described. A recursive search of all citations to the article was performed using the Web of Science (Thompson-Reuters, New York, USA) to identify any associated first-in-human studies published by January 2015. Kaplan-Meier curves were constructed for the time first-in-human studies. Factors influencing translation were evaluated using Log Rank and Cox proportional hazards models. RESULTS: 8,297 articles were screened, and 205 publications describing unique devices identified. The probability of a first-in-human at 10 years was 9.8%. Clinical involvement was a significant predictor of a first-in-human study (p = 0.02); devices developed with early clinical collaboration were over six times more likely to be translated than those without (RR 6.5 [95% CI 0.9 - 48]). CONCLUSIONS: These findings support initiatives to increase clinical translation through improved interactions between basic, translational, and clinical researchers

    Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure.

    Get PDF
    BackgroundIntra-amniotic Candida albicans (C. Albicans) infection is associated with preterm birth and high morbidity and mortality rates. Survivors are prone to adverse neurodevelopmental outcomes. The mechanisms leading to these adverse neonatal brain outcomes remain largely unknown. To better understand the mechanisms underlying C. albicans-induced fetal brain injury, we studied immunological responses and structural changes of the fetal brain in a well-established translational ovine model of intra-amniotic C. albicans infection. In addition, we tested whether these potential adverse outcomes of the fetal brain were improved in utero by antifungal treatment with fluconazole.MethodsPregnant ewes received an intra-amniotic injection of 10(7) colony-forming units C. albicans or saline (controls) at 3 or 5 days before preterm delivery at 0.8 of gestation (term ~ 150 days). Fetal intra-amniotic/intra-peritoneal injections of fluconazole or saline (controls) were administered 2 days after C. albicans exposure. Post mortem analyses for fungal burden, peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed to determine the effects of intra-amniotic C. albicans and fluconazole treatment.ResultsIntra-amniotic exposure to C. albicans caused a severe systemic inflammatory response, illustrated by a robust increase of plasma interleukin-6 concentrations. Cerebrospinal fluid cultures were positive for C. albicans in the majority of the 3-day C. albicans-exposed animals whereas no positive cultures were present in the 5-day C. albicans-exposed and fluconazole-treated animals. Although C. albicans was not detected in the brain parenchyma, a neuroinflammatory response in the hippocampus and white matter was seen which was characterized by increased microglial and astrocyte activation. These neuroinflammatory changes were accompanied by structural white matter injury. Intra-amniotic fluconazole reduced fetal mortality but did not attenuate neuroinflammation and white matter injury.ConclusionsIntra-amniotic C. albicans exposure provoked acute systemic and neuroinflammatory responses with concomitant white matter injury. Fluconazole treatment prevented systemic inflammation without attenuating cerebral inflammation and injury

    Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe

    Get PDF
    Acknowledgements We thank the Archaeological State Museum Schleswig-Holstein, the Archaeological State Offices of Brandenburg, Lower Saxony and Saxony and the following individuals who provided sample material: Betty Arndt, Jo¨rg Ewersen, Frederick Feulner, Susanne Hanik, Ru¨diger Krause, Jochen Reinhard, Uwe Reuter, Karl-Heinz Ro¨hrig, Maguerita Scha¨fer, Jo¨rg Schibler, Reinhold Schoon, Regina Smolnik, Thomas Terberger and Ingrid Ulbricht. We are grateful to Ulrich Schmo¨lcke, Michael Forster, Peter Forster and Aikaterini Glykou for their support and comments on the manuscript. We also thank many institutions and individuals that provided sample material and access to collections, especially the curators of the Museum fu¨r Naturkunde, Berlin; Muse´um National d0 Histoire Naturelle, Paris; Smithsonian Institution, National Museum of Natural History, Washington D.C.; Zoologische Staatssammlung, Mu¨nchen; Museum fu¨r Haustierkunde, Halle; the American Museum of Natural History, New-York. This work was funded by the Graduate School ‘Human Development in Landscapes’ at Kiel University (CAU) and supported by NERC project Grant NE/F003382/1. Radiocarbon dating was carried out at the Leibniz Laboratory, CAU. This work is licensed under a Creative Commons AttributionNonCommercial-NoDerivs 3.0 Unported License.Peer reviewedPublisher PD

    Making the Leap: the Translation of Innovative Surgical Devices From the Laboratory to the Operating Room

    Get PDF
    OBJECTIVE: To determine the rate and extent of translation of innovative surgical devices from the laboratory to first-in-human studies, and to evaluate the factors influencing such translation. SUMMARY BACKGROUND DATA: Innovative surgical devices have preceded many of the major advances in surgical practice. However, the process by which devices arising from academia find their way to translation remains poorly understood. METHODS: All biomedical engineering journals, and the 5 basic science journals with the highest impact factor, were searched between January 1993 and January 2000 using the Boolean search term "surgery OR surgeon OR surgical". Articles were included if they described the development of a new device and a surgical application was described. A recursive search of all citations to the article was performed using the Web of Science (Thompson-Reuters, New York, NY) to identify any associated first-in-human studies published by January 2015. Kaplan-Meier curves were constructed for the time to first-in-human studies. Factors influencing translation were evaluated using log-rank and Cox proportional hazards models. RESULTS: A total of 8297 articles were screened, and 205 publications describing unique devices were identified. The probability of a first-in-human at 10 years was 9.8%. Clinical involvement was a significant predictor of a first-in-human study (P = 0.02); devices developed with early clinical collaboration were over 6 times more likely to be translated than those without [RR 6.5 (95% confidence interval 0.9-48)]. CONCLUSIONS: These findings support initiatives to increase clinical translation through improved interactions between basic, translational, and clinical researchers

    Regulatory approval of new medical devices: cross sectional study

    Get PDF
    OBJECTIVE:  To investigate the regulatory approval of new medical devices. DESIGN:  Cross sectional study of new medical devices reported in the biomedical literature. DATA SOURCES:  PubMed was searched between 1 January 2000 and 31 December 2004 to identify clinical studies of new medical devices. The search was carried out during this period to allow time for regulatory approval. ELIGIBILITY CRITERIA FOR STUDY SELECTION:  Articles were included if they reported a clinical study of a new medical device and there was no evidence of a previous clinical study in the literature. We defined a medical device according to the US Food and Drug Administration as an "instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article." MAIN OUTCOME MEASURES:  Type of device, target specialty, and involvement of academia or of industry for each clinical study. The FDA medical databases were then searched for clearance or approval relevant to the device. RESULTS:  5574 titles and abstracts were screened, 493 full text articles assessed for eligibility, and 218 clinical studies of new medical devices included. In all, 99/218 (45%) of the devices described in clinical studies ultimately received regulatory clearance or approval. These included 510(k) clearance for devices determined to be "substantially equivalent" to another legally marketed device (78/99; 79%), premarket approval for high risk devices (17/99; 17%), and others (4/99; 4%). Of these, 43 devices (43/99; 43%) were actually cleared or approved before a clinical study was published. CONCLUSIONS:  We identified a multitude of new medical devices in clinical studies, almost half of which received regulatory clearance or approval. The 510(k) pathway was most commonly used, and clearance often preceded the first published clinical study

    Application of network traffic flow model to road maintenance

    Get PDF
    The study shows how the evolution of two-way traffic flows on a local highway network can be predicted over time using a network-level traffic flow model (NTFM) to model both urban and motorway road networks. After a brief review of the main principles of the NTFM and its associated sub-models, the paper describes how a maintenance worksite can be modelled using a roadwork-node sub-model and a network solution routine in the NTFM. In order to model the two-way traffic flow in the road network, an iterative simulation method is used to generate the evolution of dependent traffic flows and queues. The NTFM has been applied to model the traffic characteristics and the effects of maintenance activities on the local Loughborough–Nottingham highway network. The study has demonstrated that the methodology is useful in selecting various worksite arrangements in order to reduce the effects of maintenance on road users

    Defects and lithium migration in Li<sub>2</sub>CuO<sub>2</sub>

    Get PDF
    Li2CuO2 is an important candidate material as a cathode in lithium ion batteries. Atomistic simulation methods are used to investigate the defect processes, electronic structure and lithium migration mechanisms in Li2CuO2. Here we show that the lithium energy of migration via the vacancy mechanism is very low, at 0.11 eV. The high lithium Frenkel energy (1.88 eV/defect) prompted the consideration of defect engineering strategies in order to increase the concentration of lithium vacancies that act as vehicles for the vacancy mediated lithium self-diffusion in Li2CuO2. It is shown that aluminium doping will significantly reduce the energy required to form a lithium vacancy from 1.88 eV to 0.97 eV for every aluminium introduced, however, it will also increase the migration energy barrier of lithium in the vicinity of the aluminium dopant to 0.22 eV. Still, the introduction of aluminium is favourable compared to the lithium Frenkel process. Other trivalent dopants considered herein require significantly higher solution energies, whereas their impact on the migration energy barrier was more pronounced. When considering the electronic structure of defective Li2CuO2, the presence of aluminium dopants results in the introduction of electronic states into the energy band gap. Therefore, doping with aluminium is an effective doping strategy to increase the concentration of lithium vacancies, with a minimal impact on the kinetics
    • …
    corecore